IntroductionPoint transformer v3는 기존 Transformer 기반 Point Cloud 모델들이 정확도와 효율성 사이의 trade-off 문제를 해결하기 위해, 복잡한 설계 보다는 단순성과 확장성을 우선적으로 한 구조를 제안한다. 저자는 모델의 성능이 복잡한 구조 보다는 스케일에 더 큰 영향을 받는다고 주장한다. 그에 따라 Point Cloud Serialization 방식을 도입하여 효율화 시키고, Serialized Attention을 적용해 receptive field를 확보한다. 그 과정에서 새로운 Position encoding 방식도 적용한다. 자세한 내용은 아래에서 다루겠다.결과적으로 전작에 비해 추론 속도, 메모리 사용량 부분에서 우수한 성능을 달성했다. 기존 ..